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1. Introduction 

The study of the interaction between the two molecular systems is important 
for the interpretation of the reactivity of the molecules and intermolecular inter- 
actions. One of the possible frameworks in which this study can be made is the 
extended Hfickel method (EHM) [1]. In this method, the formulation of the 
above mentioned problem is somewhat complicated by the presence of the non- 
zero overlap between the molecular orbitals belonging to different molecular 
systems. As a consequence, a generalized version of the perturbation theory has 
to be adopted, which works with the non-orthogonal set of the unperturbed 
molecular orbitals [2, 3]. Salem [4] elaborated the appropriate perturbation 
procedure for the case of two interacting systems in the framework of re-electron 
Hfickel method. This method has been generalized by Devaquet and Salem [5, 6] 
to include the electronic repulsion. The general perturbation theory for the EHM 
has been elaborated by Imamura [7-1. In his approach the following two dif- 
ficulties may be noted: (i) his formalism seems not to be quite suitable for calcu- 
lations of the interaction energy to higher than the second order, and (ii) it is not 
quite clear from his derivation whether his formula for interaction energy can be 
applied to the interaction of the two identical molecular systems. 

In the present paper the above problem is reformulated using the second- 
quantized formalism and the diagrammatic perturbation technique. This ap- 
proach is shown to be free from the above mentioned shortcomings. The 
application of the diagrammatic method to the calculation of the interaction 
energy is complicated by the presence of the mentioned overlap. The unified 
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system of the one-particle functions does not form an orthonormal set. Then the 
corresponding creation and annihilation operators do not obey the well-known 
anticommutation relations. Therefore the direct formulation of the diagrammatic 
perturbation theory leads to many formal difficulties [8, 9]. Basilevsky and 
Berenfeld [113] in their study of the general many-body theory of the inter- 
molecular interactions have circumvented this formal difficulty by working with 
one-particle basis obtained by orthogonalizing the original one. 

In this paper the similar approach is used to formulate the diagrammatic 
theory of the interaction energy calculated in the framework of the EHM. The 
present approach is general and may readily be either specified for simpler or 
more complex problems. Finally, the method used in this paper may be useful 
as a methodological basis for the study of the interaction of the molecules with 
explicit inclusion of the electronic repulsion by the diagrammatic perturbation 
technique. 

2. Preliminary Considerations 
Let us examine two molecular systems A and B. There exist two distinct 

orthonormal sets of molecular spinorbitals, localized on the molecular systems A 
and B 

{Icpi); i 6 A} (system A), (la) 

{[(pj);j 6 B} (system B), (lb) 

which form column vectors @A and @B. Then we may define the new column 
vector 

We assume that spinorbitals from (la) and (lb) are non-orthogonal, i.e. 

�9 ~+ = T = I  + S ,  (3a) 

S = ( ~ B ~  ~A@+~O ]' (3b) 

where matrix S has elements Sij = (~oi[cPj). 
In the following, we orthogonalize the set of spinorbitals from column vector 

by L6wdin's orthogonalization procedure [11] 

= T -1/2 ~ ,  (4) 

where the column vector ~P is formed by the set of orthonormal spinorbitals 
{[~p~); i ~ A + B}. Under the assumption that eigenvalues 2 of the overlap matrix S 
fulfill condition [12]: [2l < 1, then the orthogonalization matrix T -1/2 may be 
expressed as expansion 

r - l J 2 :  ( " Is~ . . . .  (5) 
. :o  \ -  1 /2/  
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From this expansion for T -1/2 directly follows that one has one-to-one mapping 
between the elements of the column vectors ~/i and ~, realized by the limite 
process: ~ ~ if S~0 .  Introducing (5) to (4) and using the property that S u = 0 
for i , j6  A or i,j 6 B, we obtain the following expansion formula for the com- 
ponents of the column vector 

[~P,) = Iqh) - 1 ~ Su [goj) + ~ ~ ~ S,kSk, Iq~,) + ' (6) 
jeB kEB leA 

for i t  A; and similarly for i ~ B, only A~-~B must be exchanged. The effective 
Hamiltonian/1 of the supersystem A + B is represented in the basis of functions 
( la-b)  by the matrix 

H = # / t # +  (7) 

with the matrix elements H u = (goil/~l q~j>. It is assumed that 

Hij = 8i~ij (8) 

for i ,j  6 A and/or i , j  6 B, where e~ are eigenvalues of effective Hamiltonian of the 
isolated system A or B. 

Similarly, Hamiltonian H can be also represented in the orthonormal basis (4) 
by matrix 

= ~ f f I ~  + = T - 1 / Z H T  -1/2 (9) 

with the matrix elements Hij= <~l/~l~pj>. Substituting (5) into (9) the following 
expansion is obtained 

H =  ~ H ('), (lOa) 
n : O  

H(~ H ,  (lOb) 

H (1) = - �89 + S H ) ,  (10c) 

H (2) ---- 3 ( H S 2  -}- S 2 H + 2 S H S ) ,  (lOd) 

etc. 

3. Second-Quantization Representation 

Let us define the creation 4 + and annihilation _~ operators for the ortho- 
normal set of spinorbitals {[~Pi)} introduced by (4) satisfying the obvious anti- 
commutation relations [13-14]. Then [~pi)= )(i + 10), where [0) is the normalized 
vacuum state vector. The many-body effective Hamiltonian in the second- 
quantization representation has the form 

= Z + L ,  (1 l) 
i,j 

where the matrix elements Hu are defined by (9) and summation runs over all 
elements of the set of orthonormal spinorbitals {[~Pi)}. Substituing (10a) into (11) 
and using (8) after simple algebraic manipulations the following expression is 
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obtained: 

i~A jeB i~A j~B  

+ ~ I E u~;,~,+ ~,+ y ~;,~,+yc, (12) 
n = 1 I.i,j+A i,jEB 

E E n~;, t,+ + x, +,7 *,)}. 
i eA  j~B 

In the following the state vector is defined as 

[~o> = 1-I )(i + I~ XJ+ [0>, (13) 
l eA  j~B 

which is taken in the next as a new vacuum state [14]. The first product in (13) 
runs over all occupied spinorbitals of the system A collected in the set A; similarly 
second product runs over all occupied spinorbitals of the systems B collected in 
the set B. Then, we may define [13, 14] N-product and contraction of the creation 
and annihilation operators, which are related to the state vector [~o>. 

~?i + L = N [~,+ ~, l+ ~ , ~ : ,  (14) 

where N[.. .1 is N-product, and contraction is 

)~i+)~j={a02 for i , j ~ a  or i , jeB (15) 
other cases. 

Using these concepts it is possible to express the Hamiltonian defined by (11) in 
the form 

~=Eo+~o +~,, (*6) 
where the scalar quantity E o is defined as follows 

E o = ~ E(o ") , (17a) 
n=O 

E(o ~ ~ ei + Z ~J, (lVb) 
i eA  j c B  

E~o ") = ~ H~i ")+ z.,V H!".)jj, (17c) 
lEA jEB 

where E~o ~ is interpreted as the sum of ground-state energies of the systems A 
and B. The unperturbed effective Hamiltonian ~o  has diagonal form 

afao _- ~ e, N [)( i+ )~,] -i - EgjN[Xf-f(jl (18) 
i~A jmB 

and perturbation ~ 

~,= Y, Y,H[~ Xj]+ N[f(j+ X,]) 
i~A j e B  

% I E H[;'N[f(,+f(a] + E H't,;'N[f(,+f(J] (19) 
n = l  [ i , j ~ A  i , jeB 

+ E EH};'(N[X,+L]+N[2/2d)} �9 
i~A j~B 
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If we assume that distance between molecular systems increases to infinity, then 
the overlap matrix S and the matrix elements H u for i e A and j e B tend to zero, 
i.e. perturbation ~Xf 1 tends to zero for non-interacting molecular systems A and B. 
This means, that we divided the effective Hamiltonian ~ into two parts. The 
first part E~o ~ + ~o  describes the noninteracting molecular systems A and B. The 
second part E o -E(o~ ~1 describes the interaction between systems. 

4. Diagrammatic Perturbation Method 

For the application of the diagrammatic technique in order to calculate the 
perturbed eigenvalues of the effective Hamiltonian ~ it is necessary to introduce 
diagrammatic interpretation of the single terms in the expression (19) for the 
perturbation ~1. Collection of diagrammatic vertices for all terms in (19) is shown 
on Fig. 1. As usual in Hugenholtz's graphology [15] the particles (holes) are 
represented by directed lines which go from right (left) to left (right). The vertices 
are represented as a heavy dot or integer encircled with one outgoing and one 
incoming line. In order to distinguish between hole and/or particle lines from 

! 

H(~IN[ ^4 -^ = Xj X i] for j ~ 13 and iEA 

I 

H(i~) N [~'Xj_] for j& 13 and is 

i J 

B 
A 

H(i~ IN [Xl-)~j] for i,j ~: B 

A i j 
H(i~) N [X+Xj]  for i , jeA 

J 

I 

- -  H~ / )  ^ +^ - -  NEXj Xi] for is  cmd js 

Fig. 1. All possible vertices for the perturbation ~ 
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E _ =111, =[2) _ 
AB- ~O"w=O "1" 

i i 

J j 

i i 

J J 

I i i 

i i 

i i 

+ < 2 >  +-<2> + 
J i 

Fig. 2. Diagrammatic expression for the interaction energy up to the second order 

the system A or B, the horizontal line is drawn, which is considered as a border 
[10]. Then, the upper (down) half-plane is reserved for the holes and/or  particles 
from the system B(A). 

We are now ready to use the well-known Goldstone-Hugenholtz [15, 17] 
linked-cluster theorem for the calculation of the perturbed (exact) ground-state 
energy E of interacting systems A and B. 

1 + "} leo>, E=Eo+<r E(oO _ o (20) 

where index C means that in the above expansion contribute only the terms 
which in the diagrammatic interpretation are denoted as the ground-state con- 
nected diagrams (in Hugenholtz's notation [-15]). Substracting from the energy E 
defined by (20) the ground-state unperturbed energy E(o ~ the interaction energy 
between systems A and B treated in the framework of EHM is obtained, i.e. 

EAB = E - E(o ~ . (21) 

If we assume that the matrix elements Hij and Sij (for i~ A and j s B) are the 
first order quantities, then the interaction energy EAB up to the second order is 
expressed on Fig. 2. After using standard rules of Hugenholtz's graphology [15] 
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the following explicite expression for interaction energy up to the second order 
is obtained 

EAB = E (H(I') 4- /4 (2) ,--,s -- "'JJ' + E (H(, 1) + H}? )) 
j~A i~B 

-~ E E (H(~ H } l ' ) 2  

i~g j~A ~'j -- 8i 

+ Y E (H[~ H[))):, 
i~B j~X ~i -- ~j 

(22) 

where in the third (fourth) term the summation with i e B (j e A) runs over all 
unoccupied molecular spinorbitals from B (A). Introducing (10b-c) into (22) and 
after simple algebraic manipulations the final expression for the interaction 
energy is obtained 

EAB = -- E E S i j [ 2 H i j -  SiJ(e* + eft] 
j~A i~B 

- Z Y 
i~B j~X g j -  ei (23) 

- Z Z 
iEB j~A /~i - -  Cj 

This result is identical with the Imamura expression [7]. As follows from our 
derivation, the interaction energy (23) is applicable not only to the different 
molecular systems but also for the identical ones. Further contribution to the 
interaction energy can easily be obtained by inclusion the next terms in and 
corresponding diagrams of the particular type. It seems that using this procedure 
the diagrammatic technique can be useful for the interpretation of the individual 
contributions to the interaction energy calculated in the framework of EHM. 
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